If sin(alpha) + (Sin(alpha))^2 = 1, then the value of (cos(alpha))^12 + 3(cos(alpha))^10 + 3(cos(alpha))^8 + (cos(alpha))^6 – 1 is
If \(\sin \alpha+(\operatorname{Sin} \alpha)^2=1\), then the value of \((\cos \alpha)^{12}+3(\cos \alpha)^{10}+3(\cos \alpha)^8+(\cos \alpha)^6-1\) is
Share
Solution
Given:
\[ \sin \alpha + (\sin \alpha)^2 = 1 \]
Step 1: Simplify the given equation
\[ \sin \alpha = 1 – (\sin \alpha)^2 \]
\[ \sin \alpha = (\cos \alpha)^2 \] (Since \((\sin \alpha)^2 + (\cos \alpha)^2 = 1\))
Step 2: Substitute \(\sin \alpha = (\cos \alpha)^2\) into the expression
\[ (\cos \alpha)^{12} + 3(\cos \alpha)^{10} + 3(\cos \alpha)^8 + (\cos \alpha)^6 – 1 \]
\[ = \left((\cos \alpha)^4 + (\cos \alpha)^2\right)^3 – 1 \]
\[ = \left((\sin \alpha)^2 + (\cos \alpha)^2\right)^3 – 1 \]
\[ = 1^3 – 1 \]
\[ = 1 – 1 \]
\[ = 0 \]
Conclusion
The value of \((\cos \alpha)^{12} + 3(\cos \alpha)^{10} + 3(\cos \alpha)^8 + (\cos \alpha)^6 – 1\) is 0.