The product of two 2-digit numbers is 1938 . If the product of their unit’s digits is 28 and that of ten’s digits is 15 , find the larger number.
(a) 34
(b) 57
(c) 43
(d) 75
The product of two 2-digit numbers is 1938 . If the product of their unit’s digits is 28 and that of ten’s digits is 15 , find the larger number. (a) 34 (b) 57 (c) 43 (d) 75
Share
Correct Answer
Given the product of the unit’s digits is 28 and the product of the ten’s digits is 15, we determined:
This analysis provides us with two potential pairs of numbers based on the combinations of the ten’s and unit’s digits:
After calculating the products:
The calculations confirm that \(34 \times 57 = 1938\), aligning perfectly with the given conditions.
Therefore, the larger number among the two is 57.
The correct answer is (b) 57.