If a + b + c = 0, then the value of
a^2/(a^2 – bc) + b^2/(b^2 – ca) + c^2/(c^2 – ab)
Lost your password? Please enter your email address. You will receive a link and will create a new password via email.
Please briefly explain why you feel this question should be reported.
Please briefly explain why you feel this answer should be reported.
Please briefly explain why you feel this user should be reported.
Solution
Given:
\[ a + b + c = 0 \]
We need to find the value of:
\[ \frac{a^2}{a^2 – bc} + \frac{b^2}{b^2 – ca} + \frac{c^2}{c^2 – ab} \]
Since \(a + b + c = 0\), we can write \(a = -(b + c)\).
Step 1: Substitute \(a = -(b + c)\)
\[ \frac{(-b – c)^2}{(-b – c)^2 – bc} + \frac{b^2}{b^2 – c(-b – c)} + \frac{c^2}{c^2 – b(-b – c)} \]
Step 2: Simplify
\[ \frac{(b + c)^2}{(b + c)^2 – bc} + \frac{b^2}{b^2 + bc – c^2} + \frac{c^2}{c^2 + bc – b^2} \]
Step 3: Simplify further
\[ \frac{(b + c)^2}{b^2 + c^2 + 2bc – bc} + \frac{b^2}{b^2 + c^2 + bc} + \frac{c^2}{b^2 + c^2 + bc} \]
\[ \frac{(b + c)^2}{b^2 + c^2 + bc} + \frac{b^2}{b^2 + c^2 + bc} + \frac{c^2}{b^2 + c^2 + bc} \]
Step 4: Combine the fractions
\[ \frac{(b + c)^2 + b^2 + c^2}{b^2 + c^2 + bc} = \frac{b^2 + c^2 + 2bc + b^2 + c^2}{b^2 + c^2 + bc} \]
\[ = \frac{2b^2 + 2c^2 + 2bc}{b^2 + c^2 + bc} \]
\[ = 2 \frac{b^2 + c^2 + bc}{b^2 + c^2 + bc} \]
\[ = 2 \]
Conclusion
The value of \(\frac{a^2}{a^2 – bc} + \frac{b^2}{b^2 – ca} + \frac{c^2}{c^2 – ab}\) is 2.