If `Sin(21) = x/y`, then find `sec(21) – sin(69)` is equal to.
If \( \sin 21^\circ = \frac{x}{y} \), then find \( \sec 21^\circ – \sin 69^\circ \) is equal to.
Share
Lost your password? Please enter your email address. You will receive a link and will create a new password via email.
Please briefly explain why you feel this question should be reported.
Please briefly explain why you feel this answer should be reported.
Please briefly explain why you feel this user should be reported.
Solution
Given:
\[ \sin 21^\circ = \frac{x}{y} \]
We need to find the value of \(\sec 21^\circ – \sin 69^\circ\).
Using the identity \(\sin(90^\circ – \theta) = \cos \theta\), we have:
\[ \sin 69^\circ = \sin(90^\circ – 21^\circ) = \cos 21^\circ \]
Now, we know that \(\cos 21^\circ = \sqrt{1 – \sin^2 21^\circ} = \sqrt{1 – \left(\frac{x}{y}\right)^2} = \frac{\sqrt{y^2 – x^2}}{y}\).
Therefore, the expression \(\sec 21^\circ – \sin 69^\circ\) becomes:
\[ \sec 21^\circ – \sin 69^\circ = \frac{1}{\cos 21^\circ} – \cos 21^\circ \]
\[ = \frac{y}{\sqrt{y^2 – x^2}} – \frac{\sqrt{y^2 – x^2}}{y} \]
\[ = \frac{y^2 – (y^2 – x^2)}{y\sqrt{y^2 – x^2}} \]
\[ = \frac{x^2}{y\sqrt{y^2 – x^2}} \]
Conclusion
The value of \(\sec 21^\circ – \sin 69^\circ\) is \(\frac{x^2}{y\sqrt{y^2 – x^2}}\).