Find the value of `cos^2(theta) * (sqrt((1 + sin(theta))/(1 – sin(theta))) + sqrt((1 – sin(theta))/(1 + sin(theta))))`.
\[ \text { Find the value of } \cos ^2 \theta\left(\sqrt{\frac{1+\sin \theta}{1-\sin \theta}}+\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}\right) \]
Share
Given:
– We need to find the value of \(\cos^2 \theta \left(\sqrt{\frac{1+\sin \theta}{1-\sin \theta}} + \sqrt{\frac{1-\sin \theta}{1+\sin \theta}}\right)\).
1. Multiply the numerator and denominator of each fraction inside the square roots by the conjugate of the denominator:
\[ \cos^2 \theta \left(\sqrt{\frac{(1+\sin \theta)(1+\sin \theta)}{(1-\sin \theta)(1+\sin \theta)}} + \sqrt{\frac{(1-\sin \theta)(1-\sin \theta)}{(1+\sin \theta)(1-\sin \theta)}}\right) \]
2. Simplify the expressions inside the square roots using the identity \(1 – \sin^2 \theta = \cos^2 \theta\):
\[ \cos^2 \theta \left(\sqrt{\frac{(1+\sin \theta)^2}{\cos^2 \theta}} + \sqrt{\frac{(1-\sin \theta)^2}{\cos^2 \theta}}\right) \]
3. Simplify further by taking the square roots:
\[ \cos^2 \theta \left(\frac{1+\sin \theta}{\cos \theta} + \frac{1-\sin \theta}{\cos \theta}\right) \]
4. Combine the fractions:
\[ \cos^2 \theta \left(\frac{1+\sin \theta + 1 – \sin \theta}{\cos \theta}\right) = \frac{2\cos^2 \theta}{\cos \theta} \]
5. Simplify the expression:
\[ 2\cos \theta \]
Conclusion:
The value of \(\cos^2 \theta \left(\sqrt{\frac{1+\sin \theta}{1-\sin \theta}} + \sqrt{\frac{1-\sin \theta}{1+\sin \theta}}\right)\) is \(2\cos \theta\).