Find the value of `16/sqrt(3) * (cos(50) * cos(10) * cos(110) * cos(60))`.
\[ \text { Find the value of } \frac{16}{\sqrt{3}}\left(\cos 50^{\circ} \cos 10^{\circ} \cos 110^{\circ} \cos 60^{\circ}\right) \]
Share
Lost your password? Please enter your email address. You will receive a link and will create a new password via email.
Please briefly explain why you feel this question should be reported.
Please briefly explain why you feel this answer should be reported.
Please briefly explain why you feel this user should be reported.
Given:
– We need to find the value of \(\frac{16}{\sqrt{3}}\left(\cos 50^\circ \cos 10^\circ \cos 110^\circ \cos 60^\circ\right)\).
1. We use the identity \(\cos x \cos(60 – x) \cos(60 + x) = \frac{1}{4} \cos 3x\):
\[ \cos x \cos(60 – x) \cos(60 + x) = \frac{1}{4} \cos 3x \]
2. Applying this identity to \(\cos 50^\circ, \cos 10^\circ, \cos 110^\circ\):
\[ \cos 50^\circ \cos 10^\circ \cos 110^\circ = \frac{1}{4} \cos 150^\circ \]
\[ \cos 150^\circ = -\frac{\sqrt{3}}{2} \]
\[ \cos 50^\circ \cos 10^\circ \cos 110^\circ = -\frac{\sqrt{3}}{8} \]
3. Also, \(\cos 60^\circ = \frac{1}{2}\).
4. Substituting these values into the given expression:
\[ \frac{16}{\sqrt{3}}\left(\cos 50^\circ \cos 10^\circ \cos 110^\circ \cos 60^\circ\right) \]
\[ = \frac{16}{\sqrt{3}} \times \left(-\frac{\sqrt{3}}{8}\right) \times \frac{1}{2} \]
\[ = -1 \]
Conclusion:
The value of \(\frac{16}{\sqrt{3}}\left(\cos 50^\circ \cos 10^\circ \cos 110^\circ \cos 60^\circ\right)\) is \(-1\).