If `cot((pi)/2 – (theta)/2) = sqrt(3)`, then the value of `sin(theta) – cos(theta)` is what?
\[ \text { if } \cot \left(\frac{\pi}{2}-\frac{\theta}{2}\right)=\sqrt{3}, \text { then the value of } \sin \theta-\cos \theta=? \]
Share
Lost your password? Please enter your email address. You will receive a link and will create a new password via email.
Please briefly explain why you feel this question should be reported.
Please briefly explain why you feel this answer should be reported.
Please briefly explain why you feel this user should be reported.
Given:
\[
\cot \left(\frac{\pi}{2} – \frac{\theta}{2}\right) = \sqrt{3}
\]
We can use the cofunction identity \(\cot(\frac{\pi}{2} – x) = \tan(x)\) to rewrite the given equation:
\[
\tan\left(\frac{\theta}{2}\right) = \sqrt{3}
\]
Now, we know that \(\tan(\frac{\pi}{3}) = \sqrt{3}\), so:
\[
\frac{\theta}{2} = \frac{\pi}{3}
\]
Thus:
\[
\theta = \frac{2\pi}{3}
\]
Now, we can find the value of \(\sin \theta – \cos \theta\):
\[
\sin \theta – \cos \theta = \sin\left(\frac{2\pi}{3}\right) – \cos\left(\frac{2\pi}{3}\right)
\]
Using the values of sine and cosine for \(\frac{2\pi}{3}\):
\[
\sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2}, \quad \cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2}
\]
So:
\[
\sin \theta – \cos \theta = \frac{\sqrt{3}}{2} – \left(-\frac{1}{2}\right) = \frac{\sqrt{3}}{2} + \frac{1}{2} = \frac{\sqrt{3} + 1}{2}
\]
Therefore, the value of \(\sin \theta – \cos \theta\) is \(\frac{\sqrt{3} + 1}{2}\).