If a + b + c = 0, then the value of a^2/(a^2 – bc) + b^2/(b^2 – ca) + c^2/(c^2 – ab)
Solution Given: \[ \left(\frac{\sin 35^\circ}{\cos 55^\circ}\right)^2 + \left(\frac{\cos 55^\circ}{\sin 35^\circ}\right)^2 - 2\cos 30^\circ \] Step 1: Use the identity \(\cos(90^\circ - \theta) = \sin \theta\) \[ \left(\frac{\sin 35^\circ}{\cos 55^\circ}\right)^2 + \left(\frac{\cos 55^\circ}{\sin 35Read more
Solution
Given:
\[ \left(\frac{\sin 35^\circ}{\cos 55^\circ}\right)^2 + \left(\frac{\cos 55^\circ}{\sin 35^\circ}\right)^2 – 2\cos 30^\circ \]
Step 1: Use the identity \(\cos(90^\circ – \theta) = \sin \theta\)
\[ \left(\frac{\sin 35^\circ}{\cos 55^\circ}\right)^2 + \left(\frac{\cos 55^\circ}{\sin 35^\circ}\right)^2 – 2\cos 30^\circ \]
\[ = \left(\frac{\sin 35^\circ}{\sin(90^\circ – 35^\circ)}\right)^2 + \left(\frac{\sin(90^\circ – 55^\circ)}{\sin 35^\circ}\right)^2 – 2\cos 30^\circ \]
\[ = \left(\frac{\sin 35^\circ}{\sin 35^\circ}\right)^2 + \left(\frac{\sin 35^\circ}{\sin 35^\circ}\right)^2 – 2\cos 30^\circ \]
Step 2: Simplify
\[ = 1 + 1 – 2\left(\frac{\sqrt{3}}{2}\right) \]
\[ = 2 – \sqrt{3} \]
Conclusion
The value of the given expression is \(2 – \sqrt{3}\).
See less
Solution Given: \[ a + b + c = 0 \] We need to find the value of: \[ \frac{a^2}{a^2 - bc} + \frac{b^2}{b^2 - ca} + \frac{c^2}{c^2 - ab} \] Since \(a + b + c = 0\), we can write \(a = -(b + c)\). Step 1: Substitute \(a = -(b + c)\) \[ \frac{(-b - c)^2}{(-b - c)^2 - bc} + \frac{b^2}{b^2 - c(-b - c)} +Read more
Solution
Given:
\[ a + b + c = 0 \]
We need to find the value of:
\[ \frac{a^2}{a^2 – bc} + \frac{b^2}{b^2 – ca} + \frac{c^2}{c^2 – ab} \]
Since \(a + b + c = 0\), we can write \(a = -(b + c)\).
Step 1: Substitute \(a = -(b + c)\)
\[ \frac{(-b – c)^2}{(-b – c)^2 – bc} + \frac{b^2}{b^2 – c(-b – c)} + \frac{c^2}{c^2 – b(-b – c)} \]
Step 2: Simplify
\[ \frac{(b + c)^2}{(b + c)^2 – bc} + \frac{b^2}{b^2 + bc – c^2} + \frac{c^2}{c^2 + bc – b^2} \]
Step 3: Simplify further
\[ \frac{(b + c)^2}{b^2 + c^2 + 2bc – bc} + \frac{b^2}{b^2 + c^2 + bc} + \frac{c^2}{b^2 + c^2 + bc} \]
\[ \frac{(b + c)^2}{b^2 + c^2 + bc} + \frac{b^2}{b^2 + c^2 + bc} + \frac{c^2}{b^2 + c^2 + bc} \]
Step 4: Combine the fractions
\[ \frac{(b + c)^2 + b^2 + c^2}{b^2 + c^2 + bc} = \frac{b^2 + c^2 + 2bc + b^2 + c^2}{b^2 + c^2 + bc} \]
\[ = \frac{2b^2 + 2c^2 + 2bc}{b^2 + c^2 + bc} \]
\[ = 2 \frac{b^2 + c^2 + bc}{b^2 + c^2 + bc} \]
\[ = 2 \]
Conclusion
The value of \(\frac{a^2}{a^2 – bc} + \frac{b^2}{b^2 – ca} + \frac{c^2}{c^2 – ab}\) is 2.
See less