Consider the following data with some missing values : \begin{tabular}{|c|c|c|c|} \hline \multirow{2}{*}{ Treatment } & & Block & \\ \cline { 2 – 4 } & I & II & III \\ \hline A & 12 & 14 & 12 \\

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

Please briefly explain why you feel this question should be reported.

Please briefly explain why you feel this answer should be reported.

Please briefly explain why you feel this user should be reported.

Consider the following data with some missing values: | Treatment | I | II | III | |-----------|----|----|-----| | A | 12 | 14 | 12 | | B | 10 | y | 8 | | C | x | 15 | 10 | **Objective:** Obtain the estimates of the missing values using Yates method and analyze the given data using a suitable techniRead more

Consider the following data with some missing values:

| Treatment | I | II | III |

|———–|—-|—-|—–|

| A | 12 | 14 | 12 |

| B | 10 | y | 8 |

| C | x | 15 | 10 |

**Objective:** Obtain the estimates of the missing values using Yates method and analyze the given data using a suitable technique.

### Solution:

1. **Estimate Missing Value \(x\):**

– Convert the two missing plots problem into one missing plot problem by taking the average of the values in Block I, where \(x\) is missing.

– Average for Block I: \((10 + 12) / 2 = 11\)

– Estimate of \(x\): \(x_1 = 11\)

2. **Form the following table with \(x_1 = 11\):**

\[

\begin{array}{|c|c|c|c|c|}

\hline \text{Treatments} & \text{I} & \text{II} & \text{III} & \text{Total} \\

\hline \mathbf{A} & 12 & 14 & 12 & T_A = 38 \\

\hline \mathbf{B} & 10 & y & 8 & T_B = 18 + y \\

\hline \mathbf{C} & 11 & 15 & 10 & T_C = 36 \\

\hline \text{Total} & B_1 = 33 & B_2 = 29 + y & B_3 = 30 & G = 92 + y \\

\hline

\end{array}

\]

– Values: \(p = 3, q = 3, B_2′ = 29, T_B’ = 18, G’ = 92\)

3. **Estimate Missing Value \(y\) using the Missing Estimation Formula:**

\[

\hat{Y} = \frac{pT_B’ + qB_2′ – G’}{(q-1)(p-1)} = \frac{3 \times 18 + 3 \times 29 – 92}{4} = \frac{54 + 87 – 92}{4} = \frac{49}{4} = 12.25 \approx 12

\]

– Estimate of \(y\): \(y_1 = 12\)

4. **Form the following table with \(y_1 = 12\):**

\[

\begin{array}{|c|c|c|c|c|}

\hline \text{Treatments} & \text{I} & \text{II} & \text{III} & \text{Total} \\

\hline \mathbf{A} & 12 & 14 & 12 & T_A = 38 \\

\hline \mathbf{B} & 10 & 12 & 8 & T_B = 30 \\

\hline \mathbf{C} & x & 15 & 10 & T_C = 25 + x \\

\hline \text{Total} & B_1 = 22 + x & B_2 = 41 & B_3 = 30 & G = 93 + x \\

\hline

\end{array}

\]

– Values: \(p = 3, q = 3, B_1′ = 22, T_C’ = 25, G’ = 93\)

5. **Estimate Missing Value \(x\) again using the Missing Estimation Formula:**

\[

\hat{x} = \frac{3 \times 25 + 3 \times 22 – 93}{4} = \frac{75 + 66 – 93}{4} = \frac{48}{4} = 12

\]

– Estimate of \(x\): \(x_2 = 12\)

6. **Validate Estimate of \(y\) with \(x_2 = 12\):**

\[

\hat{y} = \frac{3 \times 18 + 3 \times 29 – 93}{4} = \frac{54 + 87 – 93}{4} = \frac{47}{4} = 11.75 \approx 12

\]

– Second estimate of \(y\) (\(y_2\)) is not significantly different from \(y_1\).

7. **Final Estimated Values:**

– \(\hat{x} = 12\)

– \(\hat{y} = 12\)

8. **Form the table with both estimated values of \(x\) and \(y\):**

\[

\begin{array}{|c|c|c|c|c|}

\hline \text{Treatments} & \text{I} & \text{II} & \text{III} & \text{Total} \\

\hline \mathbf{A} & 12 & 14 & 12 & T_A = 38 \\

\hline \mathbf{B} & 10 & 12 & 8 & T_B = 30 \\

\hline \mathbf{C} & 12 & 15 & 10 & T_C = 37 \\

\hline \text{Total} & B_1 = 34 & B_2 = 41 & B_3 = 30 & G = 105 \\

\hline

\end{array}

\]

### ANOVA Analysis:

1. **Correction Factor (CF):**

\[

CF = \frac{(105)^2}{9} = \frac{11025}{9} = 1225

\]

2. **Raw Sum of Squares (RSS):**

\[

RSS = (12)^2 + (10)^2 + \ldots + (8)^2 + (10)^2 = 1261

\]

3. **Total Sum of Squares (TSS):**

\[

TSS = RSS – CF = 1261 – 1225 = 36

\]

4. **Treatment Sum of Squares (SST):**

\[

\begin{aligned}

SST &= \frac{(38)^2 + (30)^2 + (37)^2}{3} – CF \\

&= \frac{1444 + 900 + 1369}{3} – 1225 \\

&= \frac{3713}{3} – 1225 = 1237.67 – 1225 = 12.67

\end{aligned}

\]

5. **Block Sum of Squares (SSB):**

\[

\begin{aligned}

SSB &= \frac{(34)^2 + (41)^2 + (30)^2}{3} – CF \\

&= \frac{1156 + 1681 + 900}{3} – 1225 \\

&= 1245.67 – 1225 = 20.67

\end{aligned}

\]

6. **Error Sum of Squares (SSE):**

\[

SSE = TSS – SST – SSB = 36 – 12.67 – 20.67 = 2.66

\]

### ANOVA Table:

\[

\begin{array}{|c|c|c|c|c|c|}

\hline \text{Source of Variation} & \text{DF} & \text{SS} & \text{MSS} & \text{Variance Ratio} & \text{Tabulated} \\

\hline \text{Treatments} & 2 & 12.67 & 6.34 & 4.77 & 9.55 \\

\hline \text{Blocks} & 2 & 20.67 & 10.34 & 7.77 & 9.55 \\

\hline \text{Error} & 2 & 2.66 & 1.33 & & \\

\hline \text{Total} & 6 & & & & \\

\hline

\end{array}

\]

### Conclusion:

See lessIn the case of both treatments and blocks, the calculated value of \(F\) is less than the tabulated value of \(F\) at a 5% level of significance, indicating that treatment and block means are not significantly different.