Find the value of
\(3+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}+3}+\frac{1}{\sqrt{3}-3}\).
(a) 6
(b) 3
(c) \(\frac{3}{2(\sqrt{3}+3)}\)
(d) \(2 \sqrt{3}\)
Lost your password? Please enter your email address. You will receive a link and will create a new password via email.
Please briefly explain why you feel this question should be reported.
Please briefly explain why you feel this answer should be reported.
Please briefly explain why you feel this user should be reported.
Solution
To find the value of the given expression
\[
3+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}+3}+\frac{1}{\sqrt{3}-3},
\]
we can simplify each term individually, starting with rationalizing the denominators where necessary:
Simplification Steps
First, let’s address the fractions involving square roots by multiplying the numerator and denominator by the conjugate of the denominator when needed:
\[
\begin{aligned}
& 3+\frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}+\frac{1}{3+\sqrt{3}} \times \frac{3-\sqrt{3}}{3-\sqrt{3}}+\frac{1}{\sqrt{3}-3} \times \frac{\sqrt{3}+3}{\sqrt{3}+3} \\
& = 3+\frac{\sqrt{3}}{3}+\frac{3-\sqrt{3}}{3^2-(\sqrt{3})^2}+\frac{\sqrt{3}+3}{(\sqrt{3})^2-3^2} \\
& = 3+\frac{\sqrt{3}}{3}+\frac{3-\sqrt{3}}{9-3}+\frac{\sqrt{3}+3}{3-9} \\
& = 3+\frac{\sqrt{3}}{3}+\frac{3-\sqrt{3}}{6}-\frac{\sqrt{3}+3}{6} \\
\end{aligned}
\]
Combining terms:
\[
\begin{aligned}
& = \frac{3 \times 6}{6}+\frac{2 \sqrt{3}}{6}+\frac{3-\sqrt{3}-\sqrt{3}-3}{6} \\
& = \frac{18+2 \sqrt{3}-2 \sqrt{3}}{6} \\
& = \frac{18}{6} \\
& = 3 \\
\end{aligned}
\]
Therefore, the value of the given expression is 3.
The correct answer is (b) 3.