If `x^4 + 1/(x^4) = 322`, and `x > 1`, then the value of `x^3 – 1/(x^3)` is:
\[ \text { If } x^4+\frac{1}{x^4}=322 \text {, and } x>1 \text { then the value of } x^3-\frac{1}{x^3} \text { is } \]
Share
Lost your password? Please enter your email address. You will receive a link and will create a new password via email.
Please briefly explain why you feel this question should be reported.
Please briefly explain why you feel this answer should be reported.
Please briefly explain why you feel this user should be reported.
Given:
– \(x^4 + \frac{1}{x^4} = 322\) and \(x > 1\).
1. We know that \((a + b)^2 = a^2 + b^2 + 2ab\). Therefore, \((a + b)^2 – 2ab = a^2 + b^2\).
2. Applying this to \(x^2 + \frac{1}{x^2}\):
\[ \left(x^2 + \frac{1}{x^2}\right)^2 – 2 \times x^2 \times \frac{1}{x^2} = x^4 + \frac{1}{x^4} \]
\[ \left(x^2 + \frac{1}{x^2}\right)^2 = 322 + 2 \]
\[ \left(x^2 + \frac{1}{x^2}\right)^2 = 324 \]
\[ x^2 + \frac{1}{x^2} = \pm 18 \]
Since \(x > 1\), we take the positive root:
\[ x^2 + \frac{1}{x^2} = 18 \]
3. Similarly, for \(x^3 – \frac{1}{x^3}\), we use the identity \((a – b)^2 + 2ab = a^2 + b^2\):
\[ \left(x^2 – \frac{1}{x^2}\right)^2 + 2 = 18 \]
\[ \left(x^2 – \frac{1}{x^2}\right)^2 = 16 \]
\[ x^2 – \frac{1}{x^2} = \pm 4 \]
Since \(x > 1\), we take the positive root:
\[ x^2 – \frac{1}{x^2} = 4 \]
4. Now, cubing both sides:
\[ \left(x^3 – \frac{1}{x^3}\right) – 3 \times x \times \frac{1}{x} \left(x^2 – \frac{1}{x^2}\right) = 64 \]
\[ x^3 – \frac{1}{x^3} – 3 \times 4 = 64 \]
\[ x^3 – \frac{1}{x^3} = 64 + 12 \]
\[ x^3 – \frac{1}{x^3} = 76 \]
Conclusion:
The value of \(x^3 – \frac{1}{x^3}\) is 76.